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SUMMARY 

This paper presents the application of a preconditioned conjugate-gradient-like method to a non-self-adjoint 
problem of interest in underground flow simulation. The method furnishes a reliable iterative solution scheme 
for the non-symmetric matrices arising at each iteration of the non-linear time-stepping scheme. The method 
employs a generalized conjugate residual scheme with nested factorization as a preconditioner. Model runs 
demonstrate significant computational savings over direct sparse matrix solvers. 
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1. INTRODUCTION 

Recent years have seen increasing interest in algorithms of the conjugate-gradient type for solving 
algebraic analogues of differential equations. This trend has been especially strong in petroleum 
reservoir simulation, where the need to solve large, sparse matrix equations arising from coupled 
sets of flow equations has sparked intensive research into iterative solution techniques. The use 
of the conjugate gradient method to solve linear systems Ju = - r  dates at least to Hestenes and 
Stiefel,’ who examine the standard algorithms applicable to symmetric, positive-definite matrices. 
Such matrices arise in the approximate solution of many elliptic partial differential equations, 
Laplace’s equation being a prototype. We owe to Reid2 the view of the conjugate-gradient 
method as an iterative technique appropriate for sparse matrix systems and to Meijerink and 
van der Vorst3 the development of a practical salver using preconditioning to speed convergence 
in systems involving large, symmetric, positive-definite matrices. 

However, in fluid flow problems the differential operators are rarely self-adjoint, and as a result 
discrete approximations typically give rise to non-symmetric matrices. The importance of such 
applications has motivated the development of a variety of techniques, related to the conjugate- 
gradient method, that accommodate non-symmetric matrices. Among these are Manteuffel’s 
Chebyshev iteration m e t h ~ d , ~  Kershaw’s application of the conjugate-gradient procedure to the 
normal equations JTJu = - JTr,’ Saad’s incomplete orthogonalization methods,6 the biconjugate 
gradient (BCG) method presented by Fletcher’ and a class of preconditioned iterative methods 
based on Elman’s generalized conjugate residual (GCR) m e t h ~ d . ~ , ~  The GCR-based algorithms 
are attractive because none of them relies on computations involving JTJ, whose condition number 
may be much larger than that of the non-symmetric matrix J. Also, the GCR algorithm always 
converges provided the symmetric part of J is positive-definite, whereas with the BCG method 
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no such guarantee exists.1° As we shall review below, the use of an effective preconditioner is a 
key to efficient applications of this class of methods. 

This paper presents an application of a GCR method, using nested factorization as a 
preconditioner, to the numerical solution of a highly non-symmetric problem associated with 
porous-media flows. We take as our model equation the non-linear hyperbolic conservation law: 

wheref is a non-convex function of the principal unknown S(x,t). This equation serves as a 
very simple analogue of the two-dimensional Buckley-Leverett problem for immiscible displace- 
ments in porous media." Interest in conjugate-gradient-like methods for related problems has 
been growing in the petroleum reservoir simulation community; see for example References 12-16. 
To focus attention on the iterative linear solution technique, we have stripped away most of the 
detailed physics of the Buckley-Leverett problem while retaining the features of non-linearity and 
hyperbolicity that lead to numerical difficulties. The absence of second-order terms in equation (1) 
reflects one of the key assumptions behind the Buckley-Leverett model, namely that the effects of 
capillary pressure gradients in driving the flow are negligible compared with the effects of applied 
pressure gradients." If we follow the analogy between equation (1) and an idealized waterflood in 
an oil reservoir, S(x, t )  signifies the water saturation, q represents injection and production rates 
and f(S) is the fractional flow of water. Figure 1 depicts a typical fractional flow function. 
Equation (1) is a non-linear, first-order, hyperbolic partial differential equation written in 
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Figure 1 .  Typical fractional flow curve, f(S), and its derivative 
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conservation form. Since the equivalent differential operator a/& +f'(S)(a/ax + a/ay) is not self- 
adjoint, discrete approximations to this equation will generally lead to non-symmetric matrix 
equations. Section 2 of this paper describes one class of discrete approximations using the method 
of finite differences. 

Our discretization leads to a matrix equation Ju = - ra t  each Newton-like iteration of each time 
step. As noted above, the hyperbolicity of equation (1) forces J to be non-symmetric. To solve the 
matrix equations efficiently, we use the GCR a l g ~ r i t h m , ~  which works for non-symmetric matrices 
so long as their symmetric parts are positive definite. Section 3 describes the algorithm in detail and 
discusses some of its computational aspects. 

One characteristic difficulty of conjugate-gradient-like methods is that they tend to converge 
quite slowly when the condition number of the matrix is large. This fact can cause trouble in 
practice, since in many problems the condition number increases as the spatial grid mesh becomes 
finer. The occurrence of poorly conditioned linear systems in discretized flow problems has 
prompted a great deal of interest in preconditioning methods to improve the convergence rates of 
iterative solution schemes. In section 4 we demonstrate the application of a preconditioner using 
nested fact~rization, '~ which is especially well suited to the block structures arising in finite- 
difference approximations. 

Finally, in section 5, we discuss some sample problems solved using our approach. We illustrate, 
for example, the fact that the purely hyperbolic equation (1) exhibits uniqueness difficulties and 
that some device such as upstream weighting is needed to guarantee physically correct 
approximate solutions. We also examine the effects of capillary pressure gradients on the scheme, 
showing that when capillarity is significant upstream weighting is unnecessary. We conclude by 
comparing execution times for the preconditioned GCR technique with those obtained using a 
standard direct solution method. These comparisons demonstrate the efficacy of using nested 
factorization as a preconditioner in conjunction with GCR in hyperbolic or near-hyperbolic flow 
problems. 

FINITE DIFFERENCE APPROXIMATION 

Consider a rectangular spatial domain s2 c Iw2 that can be written as the Cartesian product 
(0, x,,,) x (0, y,,,) of two open intervals. Given uniform partitions Px:O = xo < ... < x i  = 
iAx < . . . < xI = xmax and Py :O = yo < . . . < yj = jAy < . . ' < y, = y,,,, we can approximate spatial 
derivatives using various finite-difference analogues. Similarly, if we adopt a partition 
gt:t0 < ... < tn  = nAt < ... of the time domain T = (0, a), we can use a variety of difference 
expressions to approximate time derivatives: 

In these equations SY,; denotes the approximate value of S(iAx,jAy, nAt) and f7.T' =f(SY,f'). 
The parameter OE[O, 13 indicates the weighting of the difference approximations in space. In 
particular, 6' = O,$, 1 correspond to fully upstream, centred and fully downstream weighting, 
respectively, in cases where fluid velocity components in the x- and y-directions are positive. 
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This implicit scheme calls for the evaluation of the fractional flow function .f at unknown 
arguments S;,f l .  To accommodate this non-linearity, let us introduce an iterative technique for 
advancing from the known time level t ,  to the unknown level t n +  1. We approximate the unknown 
value S;,f ' as follows: 

s;,; 2: Si,j n +  1,m + 6s;; l . m +  1 ,  

where S;,: stands for the most recently known iterative value of Sy,T1 and 6S;,;'*"+' represents 
an unknown iterative correction giving the new iterate Sy,:l*m+l = Si,j ' + l q m  + 6Si, n + ' 9 m + 1  j . To start 
the iteration at each time step, we might, for example, set Sy,fl*' = S;,j. To obtain analogous 
expressions for the flux terms in equation (1) we can use the linear extrapolation 

f;.; 1 'v f y , ;  + ,f'(s;,f '.")ss;.f 1.m 

Here, as the notation suggests, ,f;.f 

yields the following difference formula: 

= ,f(S;,f l , m )  is the value off  as the known iterative stage. 
Substituting these approximations into the partial differential equation (1) and rearranging 

A x  

Note that r;.; is the residual in the difference scheme at the mth or most recently known iterative 
stage. In practice we solve the system (2) of discrete equations iteratively for the corrections 
6SY.f ', stopping the iteration when max,,,Ir;.jf 1 9 m +  ' 1  falls below some prescribed tolerance. 

Given appropriate boundary and initial conditions, the finite-difference scheme in equation (2) 
generates a system of linear equations having the form J n + l * m ~ n + l . m + l  = - rn+lqm . Here r n + l , m  is 
the vector of residuals at the last known iteration, Jn+ l . m  is a pentadiagonal matrix of coefficients, 

represents the vector of unknown interative increments. This matrix equation 
resembles that arising in the standard Newton method for the iterative solution of non-linear 
algebraic systems, and thus J n + l , m  plays a role analogous to that of the Jacobian matrix. 
Equation (2) clearly shows that Jn+19m will generally be non-symmetric, owing to the fact that 
the original differential operator in equation (1) is not self-adjoint. 

and Un+ l . m +  1 

3. GENERALIZED CONJUGATE RESIDUAL ALGORITHM 

We have seen that the linearized iterative scheme arising from the finite-difference approximation 
ofequation (1 )  requires the solution of a non-symmetric matrix equation having the form Jn = - r 
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at each iteration. Let us assume u, r E R d  and J€RdX”. The generalized conjugate residual (GCR) 
algorithm described by Elman’ is essentially a generalization of the conjugate gradient algorithm 
to non-symmetric systems. The only requirement for GCR to be applicable is that the symmetric 
part symm J = (J + JT)/2 be positive definite. As we shall discuss, this requirement allows an 
estimate of the convergence rate for GCR. Elman’ presents numerical comparisons with other 
schemes, verifying the efficiency of the GCR method (although it is only fair to mention that in 
certain of these experiments Manteuffel’s scheme4 performed comparably well). 

The idea behind GCR is to compute a sequence of approximate solutions u ( ~ ) ,  u(~):. ‘. , u(~), . . . 
that minimize the Euclidean norm 11 &(k) ( 1  = 11 - r - Ju(,, 11 of the error over successively larger 
subsets of Rd. Before making this idea precise, let us state the GCR algorithm. 

Algorithm 1 

Given a non-singular matrix JER’~‘’ ,  rERd, and an initial guess U ( ~ ) E [ W ~ ,  with symm J positive 
definite, the following algorithm implements the GCR method for solving the system J u  = - r to 
within a given tolerance z > 0: 

k : = O ,  
q0): = - r - Ju(,, (initial error), 
q(o,: = c(,) (initial search direction), 

Do while 11 E(k) 11 3 T 

v(0):  = J q o , ,  

c((k): = E&)V(k) / (Vfk)V(k) ) ,  
u ( ~ +  = u ( ~ )  + c ( ( k ) q ( k )  (New approximate solution), 

for l = O ,  ..., k 
& ( k +  I ) : =  & ( k )  - u ( k ) v ( k )  error), 

b ( l . k +  l ) : =  ( J E ( k +  l ) ) T v I / ( V T V I ) ?  

q(k+ I ) :  = & ( k +  = C b ( l . k +  l )q( l )  (New search direction), 
I = O  

k 

v ( k +  I ) : =  J E ( k + l )  - b ( l , k +  l ) v ( I ) ,  
1=0 

k : = k +  1 .  

Each stage k of this scheme determines a search direction vector q ( k )  that is J-orthogonal to each of 
the previous search directions q(l), 0 d 1 d k - 1, meaning that (Jq(,,)TJq(l, = 0 for k # 1. The choice 
of the scalar qk) guarantees that the new iterate U ( k + l )  will minimize I I E ( ~ + ~ ) ~ ~ ~  over the affine 
subspace u(,) + span(q,,,, . . . , q(k)}. Theoretically, then, the algorithm must terminate in d stages, 
since it will have minimized the error over all of Rd. In practice, however, the finite precision of 
machine arithmetic causes a loss of strict orthogonality in the search directions, so GCR behaves 
computationally like a true iterative scheme. 

When we view GCR as an iterative scheme rather than as a procedure terminating after finitely 
many stages, it becomes important to guarantee that the scheme converges rapidly. There are two 
reasons for this. The first stems from the observation that Algorithm 1 requires storage of the 
search direction q(k) for each iteration k .  This requirement does not arise in standard conjugate- 
gradient methods for symmetric matrices J. However, it is common in related schemes for non- 
symmetric matr i~es ,~.‘ .~ the main exceptions being methods based on calculations with JT J. The 
extra storage required by truly non-symmetric schemes can be computationally disastrous if the 
system to be solved takes many iterations to achieve numerical convergence. However, if we can 
speed convergence so that the method requires only a few iterations per time step, then the extra 
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storage needed will amount to a tolerable increment in computational overhead. 
The second reason for wanting rapid convergence is that we are interested in solving large sets of 

linear equations. Thus the dimension d of the system is generally large, and an O(d)  iteration count 
is unacceptable. This observation is especially relevant in the numerical solution of flow equations, 
since accurate solutions usually demand fine spatial grids and hence large-order matrices. Elman' 
gives an estimate of the convergence rate for GCR, assuming that symm J is positive definite. Let us 
call skew J = -+(J - JT). Also, for any matrix NeRdxd,  denote by {Aq(N)}iE1 the eigenvalues of 
N; let A,,,(N) and Amin(N) be the eigenvalues of N having the largest and smallest absolute values, 
respectively, and call p(N) = ~ A r n a X ~  the spectral of N. Then the error at  the kth iterative stage obeys 
the following bound: 

Obviously, we would like the expression in braces to be as small as possible for rapid 
convergence. There are two important ways in which this estimate can indicate slow convergence. 
The first is when p(skew J)>>l,,,(symm J),  which occurs when the matrix J is strongly non- 
symmetric. The second is when A,,,(symm J) /l,,,(symm J) >> 1, that is when symm J has a large 
condition number. Thus, roughly speaking, we can expect GCR to converge slowly when the 
matrix equation to be solved is poorly conditioned. Typical discrete methods for spatial differential 
operators yield matrices whose condition numbers grow in inverse proportion to the discretization 
error, so that fine grids imply large condition numbers. Therefore we can expect to encounter 
slower convergence rates for GCR precisely when we seek more accurate solutions of flow 
equations. This fact motivates the use of preconditioning methods to reduce poorly conditioned 
matrix equations J u  = - r to equivalent systems with better condition numbers. 

4. PRECONDITIONING BY NESTED FACTORIZATION 

Our basic strategy in preconditioning is to replace a possibly ill-conditioned system J u  = - r by an 
equivalent system 3-'Ju = - 3-l  r. For this strategy to be successful computationally, the 
preconditioner 3- ' must be chosen to satisfy two criteria. First, the matrix 3- ' J must have a 
relatively small condition number; secondly, - 3 - ' v  should be easy to compute for arbitrary 
v€Rd.  In a heuristic sense, 3-'  should be 'close to' the actual inverse of J .  

Nested factorization is an algorithm introduced by Appleyard et ~ 1 . ' ~  that takes advantage of 
the nested block structure of finite-difference matrices to compute j-'. We shall review the 
algorithm allowing three space dimensions for generality. Consider the m x n x p finite-difference 
grid shown in Figure 2. Such a grid, together with a seven-point difference scheme, yields a matrix 
having the heptadiagonal structure depicted in Figure 3. This matrix exhibits a nested tridiagonal 
form in the following sense: the small blocks GjeIW" " along the diagonal are tridiagonal with non- 
zero li, di, and ui in the ith row; the large blocks AkEIWnrn nrn along the diagonal are block tridiagonal 
with non-zero matrices Mi, G ,  V j ~ R " "  " in the j th row of small blocks, and the entire matrix 
JEIW~"" pnrn = R d X  is block-tridiagonal with non-zero matrices Qk, A,, WkE R"" nrn in the kth row 
of large blocks. For convenience, let us denote the m x m matrices containing the subdiagonal 
entries Zi and superdiagonal entries ui of the small blocks G j  by Lj and Uj, respectively. 

The observation underlying nested factorization is that LDU decompositions of tridiagonal 
structures are veryeasy to compute and invert. Thus we can compute the LDU factorizations of the 
small blocks G j ,  use these to compute 'approximate' LDU factorizations of the large blocks A,, 
then use these to compute an approximate LDU factorization of the entire matrix J .  At each level 
in this nested structure the algorithm formally uses computations that mimic the Cholesky 
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Figure 3. Block structure of the iteration matrix J associated with the grid drawn in Figure 2 

decomposition of a tridiagonal matrix. There is one modification, however. As Appleyard et al.17 
explain, to preserve the mass-conserving properties of the original problem J u =  - r  at each 
iteration, one should construct a preconditioner 9 whose column sums equal those of J. This 
requirement leads to a modification of the Cholesky decompositions for the small blocks Gi. The 
precise statement of the nested factorization algorithm is as follows. 

Algorithm 2 

Given a heptadiagonal matrix J€[Wpflm x p n m  having the nested block structure described above, the 
following algorithm produces an approximate LDU factorization 9 of J using nested factorization: 

For k = 1,. . . , p (loop over large blocks) 
For j = 1,. . . , n (loop over small blocks) 

For i = 1,. . . , m (loop over rows in each small block) 
i:= ( k  - 1)n + i (global row number), 
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l , U i &  I h.: = d.- ~ - (MjG;-llVj-l)- c (Nk.&;-llWk-l), 

Bj:= diag(b,, ..., h,)ER"'""', 

G j :  = (Lj + Bj)B,r (Bj + Uj)~[W"'""' 

G : = diag (G , , . . . , Gn ) E R""' ""', 

M:= subdiag(M,,. ..,M,,)ER""~~""~, 

V:= superdiag(V,,. . . ,Vn-  l)~R""lX'"' ' ,  

K k : = ( M +  G)G~l(G+V)ER'l ' ' 'X""'  

A : =  diag(.&,, . . . ,.&"ER~"~~'~~'I ' ' ' ,  

Q:= subdiag(Q,,. ..,Qp)~RP""'XP""', 

W:=superdiag(W,, ..., Wp-l  

j:=(Q+A)A-l(A+W)ERPn"mxPrlrl-  - R l x d  (approximate LDU factorization of J). 

colnm + i I I 1  ); ~1 coInrn+i 

(LDU factorization of G j  modified by column sum 
criterion) 

(approximate LDU factorization of large block Ak), 

) [wp""' x plllll 

(In cases where an index variable such as j - 1 or k - 1 refers to an undefined index value, the 
indexed variable is understood to be zero. The notation CcoleN signifies the sum of the entries in the 
eth column of the matrix N.) 

Once we have computed the preconditioner 3, we must incorporate it into the GCR solution of 
the system 3 - Ju = - 3 - r. Because the nested factorization algorithm produces 3 in LDU form, 
the computation of j - ' v  is quite efficient for any v€Rd.  The resulting preconditioned GCR 
algorithm is as follows. 

Algorithm 3 

Given the non-singular matrix Je[WdXd, rERd, and u ( ~ , E [ W ~  as in Algorithm 1 ,  together with 
a preconditioner ~ E R " ~ " ,  the following algorithm implements the preconditioned GCR method 
for solving Ju = - r iteratively to within a tolerance z > 0: 

K : = O ,  

E ( ~ ) :  = 3- ( -  r - JU,,,), 
q o , :  = E(0)l  

v ( ~ ) :  = 3 - Jq(O), 
Do while II E ( ~ )  ( I  , 2 z 

a ( k )  : = ETk) v(k)/(v:k)  v (k) )  9 

u ( k +  l ) : =  u(k)  + %)q(k)? 
E ( k +  l ) : =  E ( k )  - c(kv(k)? 

for I = O ,  . . . ,  k 

f i ( l k + l ) :  = ( 3 - 1 J E ( k + 1 ) ) T v ( I ) / ( V ~ ) V ( I ) ) ~  
k 

I = O  

v(k + 1): = j- JE(k + 1 )  - c P ( l , k +  l ) v ( I ) >  

q ( k +  l ) : =  E ( k +  1 )  - 1 P ( l . k +  l)q(l)? 

k 

1=0 

k : = k +  1. 
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5. NUMERICAL RESULTS18 

We have examined numerical results for the methods described above using an initial-boundary- 
value problem roughly representative of a quarter-five-spot pattern displacement in an oilfield. 
Specifically, we pose equation (1) on the unit square R = (0, 1) x (0, 1) on the time interval T 
= (0, co) with no-flow boundary conditions, 

-(O,y) as = -(l,y) as = -(x,O) as = -(x, as 1) = 0, 
ax ax a Y  a Y  

and the initial conditions S(x, y, 0) = S,,, (x ,y)~R.  S,, stands for the minimum value of water 
saturation. For the fractional flow function.f(S) we use the model curve'' 

(S - S w r ) 2  

f ( s )  = ( S  - SW,)2 + (1 - so, - S ) 2 '  

where S,, = 0.16 and So, = 0.20. For the source-sink term we assume constant injection and 
production rates at the wells (0,O) and (1,l): 

&,Y) = 6(0,0) - 6(1, I), 

where 6 stands for the Dirac distribution. In a finite-difference discretization with a rectangular 
grid whose nodes are ordered lexicographically, this source-sink term has the algebraic 
analogue (1,0,. . . , l)T. 

Figures 4-6 show saturation profiles at various time levels for this problem, computed on a 
32 x 32 node spatial grid with At = 0.01. In this case 6' = 0.3, giving a slightly upstream-weighted 
scheme in keeping with the conventional approach in oil-reservoir simulation. The saturation 

INJECTION WELL 
\ 

1 

Figure 4. Numerical solution to the model problem on a 32 x 32 grid after 30 time steps (At = 0.01), computed using an 
upstream weighted approximation (0 = 0.3) 
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INJECTION WELL 
\ 

1 

Figure 5. Numerical solution to the model problem after 50 time steps (Ar = 0.01), computed using f3 = 0.3 

INJECTION WELL 
\ 

Figure 6. using 0 = 0.3 
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wave shown here is physically reasonable for a displacement having a favourable mobility ratio, 
with the exception of two types of error that are typical in finite-difference formulations of this 
problem. First, the use of upstream weighting induces numerical dissipation having 
magnitude O(Ax + Ay) as discussed by Lantz.” Thus the saturation front, which should be a 
shock, appears smeared over several grid cells. The diagonal profiles in Figure 7 illustrate this 
smearing. Secondly, the saturation wave exhibits some grid-orientation bias: the saturation front 
tends to align itself with the grid-cell boundaries, so that we can expect a grid with a different 
orientation to produce somewhat different results. Although this effect may not be critical in simple 
problems such as this one, it can lead to serious distortions of physics in more complicated flows 
with chemical reactions and interphase mass transfer. It is only fair to note, however, that these 
dificulties afflict most upstream-weighted finite-difference discretizations of oilfield flows and are 
independent of the preconditioned GCR method. 

Figures 8-10 show saturation profiles generated at various time levels using the same data as for 
Figures 4-6, with the exception that 8 = 0-5. This centred difference scheme, although 
offering O(Ax2 + Ay’) truncation error, leads to convergence difficulties with hyperbolic conserv- 
ation laws such as the Buckley-Leverett equation. The oscillatory behaviour apparent in Figure 6 
is evidence of these difficulties and occurs whether we use the preconditioned GCR method or, 
for example, a direct band matrix solver. Indeed, convergence failures in hyperbolic or near- 
hyperbolic oilfield flows have led petroleum reservoir engineers to adopt upstream weighting 
almost universally. It is worth mentioning that his circumstance has motivated a substantial body 
of research into the development of upstream-weighted numerical schemes that mitigate the 
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Figure 7. Profile of water saturations along the diagonal (x = y )  at various time levels, computed using 0 = 0 
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INJECTION WELL 
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Figure 8. Numerical solution to the model problem after time steps, using the same data as  in Figure 4 except that 0 = 0.5 

INJECTION WELL 
\ 

1 

Figure 9. Numerical solution to the model problem after 50 time steps, using the same data as in Figure 5 except that 
I)  = 0.5 
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1 PRODUCTION WELL 
/ O  X 

1 

Figure 10. Numerical solution to the model problem after 75 time steps, using the same data as  in Figure 6 except that 
0 = 0.5 

numerical diffusion and grid-orientation effects evident in Figures 4-7; see Reference 21 for a 
review. 

We have also briefly investigated the effect of capillarity on the numerical solution. In the 
capillarity-free case, upstream weighting ensures convergence through the addition of an artificial 
dissipative term proportional to the grid spacing.22 In theory, if capillary pressure gradients are 
sufficiently large, the physical dissipation will stabilize the numerics. In this case, finite-difference 
schemes for the Buckley-Leverett problem will converge without upstream weighting. The 
following extension of equation (1) incorporates a simple model of capillarity: 

as af aj- a2s a2s -+-+--c -+- = q  
at ax ay  (ax2  a y 2 )  

where C > 0. To approximate the additional term, we use standard central differences, which have 
a truncation error that is O(Ax2 + Ay2). For example 

and similarly for d2S/dy2. Figures 11 and 12 show a perspective plot and diagonal profiles, 
respectively, of the approximate water saturation computed using this scheme on a 32 x 32 grid 
with C = 0.005 and I3 = 0.5. Notice that centred differences give reasonable results in this case, in 



INJECTION WELL 

1 

Figure 11. Numerical solution to the model problem after 75 time steps, using the same data as in Figure 10 except for the 
addition of a capillarity parameter C = 0.005 
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0 1 , O  7.0 10.0 13.0 16.0 13.0 22.0 25.0 28.0 31.0 34.0 
NODE 

Figure 12. Profile of water saturations along the diagonal (x = y )  at various time levels, computed using 0 = 0.5 and 
C = 0.005 
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TableI. Comparison of run times for the model problem using the 
preconditioned GCR algorithm and direct solvers 

9 = 0.3 9 = 0.5 

Time steps Time steps 

Method 30 50 75 30 50 75 

PCG 
(7 Bands) 1.816 3.607 5.916 1.659 2.785 5.047 

IMSL 
LEQT28 
(7 Bands) 10.449 20.13 32.659 11.611 20.176 31.041 

PCG 
(5 Bands) 1.357 2.633 4.427 1.231 2.094 3.736 

IMSL 
LEQT18 
(5 Bands) 1.737 3.238 5.192 1.787 3.117 4.784 

IMSL 
LEQT28 
(5 Bands) 2.468 4.796 7.813 2.790 4.845 7.600 

Time in CP  seconds 

contrast to the highly oscillatory results generated by central differences for the capillarity-free 
case. 

The preconditioned GCR method offers significant computational savings over conventional 
direct solution methods in the inversion of the finite-difference matrices at each Newton-like 
iteration of this problem. We compared CPU times required on a Cyber 760 for the solution of the 
problem discussed above, using square grid having eight nodes on a side, with the preconditioned 
GCR method and the IMSL asymmetric band matrix solvers LEQTlB and LEQT2B. Because of 
the relatively poor conditioning at each iteration, the direct solver required iterative improvement, 
and hence only the results obtained using LEQT2B should be considered valid. Note also that the 
IMSL subroutines are not the most efficient direct algorithms available for our matrix structure. 
However, they have the virtue of being widely available and thus provide useful bench-mark 
calculations. 

Table I displays the results for several time levels in the calculation. As the data indicate, for 
the 8 x 8 model problem the preconditioned GCR algorithm (‘PGC’) requires roughly half the 
time needed by the direct solver when each subroutine receives pentadiagonal or five-banded 
matrices. To estimate the corresponding run times for a three-dimensional problem, we also 
sent each solver heptadiagonal or seven-banded matrices. In this case the preconditioned GCR 
code cut CPU time by a factor of six. On grids larger than 8 x 8 we can expect even greater savings. 

6. CONCLUSIONS 

The results reported here demonstrate the efficacy of conjugate-gradient-like methods in the 
solution of matrix equations arising from flow equations involving non-self-adjoint operators. The 
preconditioned GCR method presented above gives fast, accurate solutions to discrete analogue of a 
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simple hyperbolic problem idealizing the Buckley-Leverett equations governing two-phase oil 
reservoir flow. The particular discretizations used in this work pose a rather strenuous test, since 
the simple upstream weighting scheme employed imposes strong directional tendencies in the 
numerics. Based on the results, we can expect the preconditioned GCR method to be effective in 
more complex and veracious models of underground flow. 
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